Outcomes Post Radioactive Iodine Therapy (RAI) in Hyperthyroid Patients with Graves' Disease and Toxic Nodular Disease

Shaikhah Owayed¹, Kawthar Alshatti¹, Sulaiman Hajji², Khaled Aljenae²

¹ Internal Medicine Department - Adan Hospital, Kuwait
² Internal Medicine Department, Endocrinology Unit – Adan Hospital, Kuwait

ARTICLE INFO

Article History:
Received on 10th September, 2020
Peer Reviewed on 19th Sept, 2020
Revised on 14th October, 2020
Published on 29th October, 2020

Keywords:
hyperthyroidism, radioactive iodine, calculated dose

ABSTRACT

Background: To evaluate the success rate of therapeutic administration of a single calculated \(^{131}\text{I}\) activity for eliminating hyperthyroidism due to Graves’ disease and autonomous thyroid nodules.

Methods: Clinical records were retrospectively reviewed for patients with hyperthyroidism between September 2016 and March 2019 who received Radioactive Iodine (RAI) thyroid gland ablation therapy as definitive treatment of hyperthyroidism. Patients were divided to 2 groups, Graves’ disease (GD) and toxic multinodular goiter (TMNG)/thyroid adenoma (TA). An average dose of 5-7 MBq/g was given with response to therapy assessed at 6 months, clinically and with biomedical follow up.

Results: Total of 68 hyperthyroid patients who had received RAI were identified, 49 patients with Graves’ disease patients (72%) and 19 patients with TMNG/TA (18%). On average, GD group were younger by 13 years and a female predominance was noted in both groups. At 6-months post-RAI, patients with Graves' disease received an average dose of 370-750 MBq based on clinical assessment or fixed, with a cure rate of 94% (90% hypothyroid, 4% euthyroid). On the other hand, patients with TMNG/TA received calculated dose of 410-960 MBq based on thyroid volume and 24-hour thyroid uptake. An 89% success rate was achieved (78% hypothyroid, 11% euthyroid).

Conclusion: Radioactive iodine therapy is a potent treatment of hyperthyroidism. Further efforts must be directed at curing disease while achieving an euthyroid state for optimal patient outcome.
INTRODUCTION:
Hyperthyroidism is characterized by increased thyroid hormone synthesis and secretion from the thyroid gland, most commonly due to Graves’ disease and autonomous thyroid nodules. There are three options for treating patients with hyperthyroidism; antithyroid drugs (ATDs), radioactive iodine 131I (RAI) ablation, and surgery (1).

Radioactive iodine 131I (RAI) treatment is an effective definitive treatment of hyperthyroidism and has been available since the 1940s (2). 131I being selectively concentrated by functioning thyroid tissue that is subsequently destroyed over weeks to months by beta-radiation. (3)

The optimum radioactive iodine dose is debated and varies among institutions between a fixed dose versus a dose calculated on the basis of thyroidal radioiodine uptake, but several studies found no significant differences in treatment outcomes and in rates of permanent hypothyroidism between the two regimens. (1)

In our Hospital the calculated dose protocol depends on the 24-hour thyroid uptake scan and has been used over the last 3 years. The objective of this study is to evaluate and share the success rate of therapeutic administration of a calculated 131I dose for treating Graves’ disease and autonomous thyroid nodules.

METHODS AND MATERIAL

Standard of care:
Our institution utilizes a calculated dose of RAI for hyperthyroidism treatment regardless of aetiology (5-7 MBq/g), this corresponds with the mid-high recommended dose within the range proposed by the ATA. For those who were on oral anti-thyroid medication prior to RAI, discontinuation was advised at least 7 days prior to RAI. All patients receiving RAI were provided with written advice regarding radiation safety precautions following treatment. Post treatment, patients were followed with repeat thyroid function tests every 4 weeks for 6 months, and at longer intervals thereafter.

Study design:
We retrospectively reviewed outcomes following RAI therapy in hyperthyroid patients attending our institution who had received calculated dose RAI between September 2016 and March 2019. The RAI therapy was administered by the Nuclear Medicine Department, Adan Hospital, Kuwait. The patients were stratified into two groups, GD group and nodular thyroid disease (TMNG/TA) group, and thyroid status was determined at 6 months post RAI in order to determine treatment outcomes. The diagnosis of GD was supported with the presence of thyroid autoantibodies (namely anti-TSH receptor antibody), and/or typical findings on technetium scan. The diagnosis of TMNG/TA was supported by typical findings on technetium scan. Euthyroid state was defined biochemically as TSH level between 0.25-4.6 mU/L as per local laboratory reference range, in patients not taking concomitant thyroxine or anti-thyroid medication. Hypothyroid state was defined either biochemically as TSH level >4.6 mU/L as per local laboratory reference without concomitant anti-thyroid medication, or on the basis of a requirement for thyroxine replacement. Persistent hyperthyroidism was defined either biochemically as a TSH level <0.25 mU/L as per local laboratory reference range without concomitant thyroxine replacement, or on the basis of a requirement for anti-thyroid medication.

Statistical analysis:
Differences between categorical variables (expressed as number and percentages) were assessed using Chi-square test. Differences between continuous variables were evaluated with independent sample t-test (equal variances assumed as per Levine’s test). Values of p<0.05 were considered statistically significant. IBM SPSS software version 24 was used for statistical analysis.
RESULTS
During the specified period, we identified 68 hyperthyroid patients who had received RAI consecutively. As depicted in Table 1, 49/68 patients had GD (72%) and 19/68 TMNG/TA (18%). The GD group were on average 13 years younger than the TMNG/TA group (P<0.001). There was a female preponderance of patients in both groups, 61% for GD and 75% for TMNG/TA. Patients within Graves’ disease group received as estimated dose based on clinical assessment or fixed dose (370-750 MBq), while patients in TMNG/TA group received calculated dose based on thyroid volume and 24-hour thyroid uptake (410-960 MBq).

Table 1: Patients’ characteristics and post-RAI outcome at 6-months.

<table>
<thead>
<tr>
<th></th>
<th>GD</th>
<th>TMNG/TA</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>49</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Age (median)</td>
<td>38</td>
<td>51</td>
<td><0.005</td>
</tr>
<tr>
<td>Gender:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>22 (45%)</td>
<td>5 (26%)</td>
<td>0.174</td>
</tr>
<tr>
<td>Female</td>
<td>30 (61%)</td>
<td>15 (75%)</td>
<td></td>
</tr>
<tr>
<td>24-hour thyroid uptake (median)</td>
<td>63.295</td>
<td>51.5</td>
<td><0.005</td>
</tr>
<tr>
<td>Dose in MBq (median)</td>
<td>568.505</td>
<td>731.12</td>
<td><0.005</td>
</tr>
<tr>
<td>Thyroid status (6 months post RAI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypothyroid</td>
<td>44 (90%)</td>
<td>15 (78%)</td>
<td><0.005</td>
</tr>
<tr>
<td>Euthyroid</td>
<td>2 (4%)</td>
<td>2 (11%)</td>
<td></td>
</tr>
<tr>
<td>Hyperthyroid</td>
<td>3 (6%)</td>
<td>2 (11%)</td>
<td></td>
</tr>
</tbody>
</table>

At 6-months post-RAI, 44 (55%) patients with GD were rendered hypothyroid as opposed to 16 (78%) TMNG/TA patients. 2 (4%) patients with GD were euthyroid, compared to 2 (11%) patients with TMNG/TA. Treatment failure defined as hyperthyroid state at 6-months post-RAI was found in 3 (6%) patients with GD and 2 (11%) with TMNG/TA. Data is summarized in Figure 1.
DISCUSSION

Radioiodine therapy has been a definitive treatment for hyperthyroidism for over 50 years (4). During this time, there has been much debate on the dosing of treatment, high versus low dose, and fixed versus calculated dose of radioiodine.

In terms of dosing of radioiodine therapy, though it may be tempting to give patients a lower dose of therapy to induce an euthyroid state, the American Thyroid Association states that the goal of treatment is to cure hyperthyroidism. This is achieved by rendering the patient hypothyroid; thus, an adequate dose of radiation is required (5).

Different strategies exist for the calculation of radioiodine administered to patients. Fixed dose calculation is administering a predetermined dose of therapy irrespective of gland size and iodine uptake. Doses typically given are 5, 10, or 15 mCi (185, 370, or 555 MBq) (467). Individual dosing, however, is calculated using these variables. The size of the gland is estimated clinically or by imaging and iodine uptake is by 24-hour iodine uptake before treatment (7).

The main purpose of this study is to share our experience in Adan Hospital, Kuwait. Hyperthyroid patients were divided into two groups, Grave’s disease group and TMNG/TA group. Those with Grave’s disease received an estimated dose based on clinical evaluation or fixed dose, while TMNG/TA group received a calculated dose. Cure rate for Grave’s disease was found to be 94% and for TMNG/TA 89% at 6-months post radioiodine therapy.

When matching up our data with other data in the region around us (table 2) using the same methods of determining the dose, we find that our center has a higher cure rate, however as a consequence we report a higher rate of hypothyroidism (Graves’ disease 89.9%, TMNG/TA 79%).
Table 2: Comparison of Post-RAI in the region

<table>
<thead>
<tr>
<th>Institute</th>
<th>Disease</th>
<th>No. of patients</th>
<th>Dose received (mCi)</th>
<th>Post-radioiodine outcomes at 6 months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hypothyroid</td>
</tr>
<tr>
<td>Adan Hospital, Kuwait, present study</td>
<td>GD</td>
<td>49</td>
<td>15.4 fiD/esD</td>
<td>89.8%</td>
</tr>
<tr>
<td></td>
<td>TMNG/TA</td>
<td>19</td>
<td>19.8 calD</td>
<td>79%</td>
</tr>
<tr>
<td>Tawam Hospital, UAE, 2019 (8)</td>
<td>GD</td>
<td>97</td>
<td>14.7±3.7 calD</td>
<td>80.6%</td>
</tr>
<tr>
<td></td>
<td>TMNG</td>
<td></td>
<td>13.7±3.5 calD</td>
<td>65.2%</td>
</tr>
<tr>
<td></td>
<td>TA</td>
<td></td>
<td>16.7±3.9 calD</td>
<td>33.3%</td>
</tr>
<tr>
<td>Salmaniya Medical Complex, Bahrain* 2019 (9)</td>
<td>GD</td>
<td>118</td>
<td>15 fiD</td>
<td>88.2%</td>
</tr>
<tr>
<td></td>
<td>TMNG</td>
<td>11</td>
<td></td>
<td>84.6%</td>
</tr>
<tr>
<td></td>
<td>TA</td>
<td>7</td>
<td></td>
<td>50%</td>
</tr>
<tr>
<td>King Abdulaziz University Hospital, 2009 (10)</td>
<td>GD</td>
<td>73</td>
<td>10 fiD</td>
<td>26%</td>
</tr>
<tr>
<td>Hamad Medical Corporation, Qatar 2009 (11)</td>
<td>GD</td>
<td>85</td>
<td>10 for small goiter</td>
<td>62.4%</td>
</tr>
<tr>
<td></td>
<td>TMNG</td>
<td>13</td>
<td>15 for large goiter</td>
<td>84.6%</td>
</tr>
<tr>
<td></td>
<td>TA</td>
<td>6</td>
<td></td>
<td>50%</td>
</tr>
<tr>
<td>Sultan Qaboos University Hospital, Oman* 2002 (12)</td>
<td>GD</td>
<td>366</td>
<td>9.5-16.2 fiD</td>
<td>85.5%</td>
</tr>
</tbody>
</table>

*Patients were followed up to 12 months post radioiodine therapy
fiD = fixed dose, esD = estimated dose, calD = calculated dose

In the UK, a ten-year retrospective study evaluated the efficacy of fixed doses of 10 mCi versus 15 mCi. The overall success rate was 90% for both doses (13). This is similar to our rate, and in agreement with the literature that there is no major difference between the calculated and fixed dose method of radioiodine therapy. Furthermore, ethnicity is a variable one must consider. In West Africa, retrospective analysis of consecutive hyperthyroid patients treated with radioiodine was done. All patients received a Tc-99m pertechnetate thyroid scan before therapy. Doses were 15-30 mCi. Empirical dosing, with a minimum of 10 mCi, was administered per patient. Patients with large glands, nodular glands, and patients for retreatment received higher doses of 30 mCi. At 6 months following RAI therapy, 77.8% of patients had developed euthyroidism or hypothyroidism, confirming that patients with African decent are more resistant to treatment with radioiodine (14).

CONCLUSION
Radioactive iodine therapy is a safe definitive treatment of hyperthyroidism. In Adan Hospital, Kuwait, the cure rate for Graves’ disease and TMNG/TA is 94% and 89% respectively. This rate comes at the expense of a higher incidence of hypothyroidism. Our aim in the future is to improve patient outcome and reduce this incidence, with the possibility of introducing different strategies for calculating the dose of radioiodine therapy such as dosimetry.

AUTHOR CONTRIBUTIONS
SH and K Aljenaee designed the study. K Alshatti collected the data of the study. SO, SH, and K Aljenaee analyzed and interpreted the data. SO is the primary
author and wrote the manuscript. All authors reviewed the final manuscript.

ACKNOWLEDGMENTS
We would like to gratefully acknowledge Esraa Alqattan and Iman Alshammeri of the Nuclear Medicine Department

REFERENCES

How To Cite This Article:

Source of Support: Nil
Conflict of Interest: None declared

Your next submission with British BioMedicine Institute will reach you the below assets
- Quality Editorial service
- Swift Peer Review
- E-prints Service
- Manuscript Podcast for convenient understanding
- Global attainment for your research
- Manuscript accessibility in different formats
 (Pdf, E-pub, Full Text)
- Unceasing customer service

Track the below URL for one-step submission
http://www.britishbiomedicine.com/manuscript-submission.aspx